From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

# 406-0251-AAL  Mathematics I

 Semester Spring Semester 2016 Lecturers A. Cannas da Silva Periodicity every semester recurring course Language of instruction English Comment Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.

 Abstract This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. Objective Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment.The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. Content 1. Linear Algebra and Complex Numbers:systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra.2. Single-Variable Calculus:review of differentiation, linearisation, Taylor polynomials, maxima and minima, fundamental theorem of calculus, antiderivative, integration methods, improper integrals.3. Ordinary Differential Equations:variation of parameters, separable equations, integration by substitution, systems of linear equations with constant coefficients, 1st and higher order equations, introduction to dynamical systems. Literature - Bretscher, O.: Linear Algebra with Applications, Pearson Prentice Hall.- Thomas, G. B.: Thomas' Calculus, Part 1, Pearson Addison-Wesley.