Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

860-0042-00L  Statistics 2

SemesterSpring Semester 2020
LecturersK. Harttgen, I. Günther
Periodicityyearly recurring course
Language of instructionEnglish
CommentOnly for MSc Science, Technology and Policy


AbstractThis course introduces students to key statistical methods for analyzing social science data with a special emphasis on causal inference and policy evaluation.
ObjectiveStudents
- have a sound understanding of standard regression techniques
- know strategies to test causal hypotheses using regression analysis and/or experimental methods
- are able to formulate and implement a regression model for a particular policy question and a particular type of data
- are able to critically interpret results of applied statistics, in particular, regarding causal inference
- are able to critically read and assess published studies on policy evaluation
- are able to use the statistical software Stata for data analysis
ContentThe topics covered in the first part of the course are a revision and linear regression and non-linear regression techniques such as probit and logit regression analysis. The second part of the course focuses on causal inference and introduces methods such as panel data analysis, difference-in-difference methods, instrumental variable estimation, regression discontinuity design, and randomized controlled trials used for policy evaluation. The course shows how the various methods differ in terms of the required identifying assumptions to infer causality as well as the data needs.

Students will apply the methods from the lectures by solving bi-weekly assignments using statistical software and data sets provided by the instructors. These data sets will cover topics at the interface of policy, technology and society. Solving the assignments contributes to the final grade with a weight of 30%.