402-0595-00L  Semiconductor Nanostructures

SemesterHerbstsemester 2014
DozierendeT. M. Ihn
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungDie Grundlagen der Halbleiternanostrukturen werden besprochen, z.B. Materialherstellung, Bandstrukturen, 'bandgap engineering' und Dotierung, Feldeffekttransistoren. Aufbauend auf zweidimensionale Elektronengase wird dann die Physik der gängigen Halbleiternanostrukturen, d.h. Quantenpunktkontakte, Aharonov-Bohm Ringe und Quantendots, behandelt.
LernzielZiel der Vorlesung ist das Verständnis von fünf Schlüsselphänomenen des Elektronentransports in Halbleiter-Nanostrukturen. Dazu zählen
1. der ganzzahlige und gebrochenzahlige Quantenhalleffekt
2. die Quantisierung des Leitwerts in Quantenpunktkontakten
3. der Aharonov-Bohm Effekt und verwante Interferenzphänomene
4. resonantes Tunneln
5. der Coulomb-Blockade Effekt in Quantendots
Inhalt1. Einführung und Überblick
2. Halbleiterkristalle: Herstellung und Bandstrukturen
3. k.p-Theorie, Elektronendynamik in der Näherung der effektiven Masse
4. Envelope Funktionen, Näherung der effektiven Masse, Heterostrukturen und 'band engineering'
5. Herstellung von Nanostrukturen
6. Elektrostatik und Quantenmechanik von Halbleiternanostrukturen
7. Heterostrukturen und zweidimensionale Elektronengase
8. Drude Transport
9. Elektronentransport in Quantenpunktkontakten; Landauer-Büttiker Beschreibung
10. Ballistische Transportexperimente
11. Interferenzeffekte in Aharonov-Bohm Ringen und verwandte Phänomene
12. Elektron im Magnetfeld, Shubnikov-de Haas Effekt
13. Ganzzahliger Quantenhalleffekt
14. Quantendots, Coulombblockade
SkriptT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteraturNeben dem Vorlesungsskript können folgende Bücher empfohlen werden:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Voraussetzungen / BesonderesDie Vorlesung richtet sich an alle Physikstudenten nach dem Bachelorabschluss. Grundlagen in der Festkörperphysik sind von Vorteil, ambitionierte Studenten im fünften Semester können der Vorlesung aber auch folgen. Die Vorlesung eignet sich auch für das Doktoratsstudium. Üblicherweise wird der Kurs auf Englisch gehalten werden.