401-0353-00L  Analysis III

SemesterHerbstsemester 2014
DozierendeP. S. Jossen
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheDeutsch


KurzbeschreibungIn dieser Lehrveranstaltung werden Probleme der angewandten Analysis behandelt, speziell ausgerichtet auf die Bedürfnisse der Elektrotechniker. Dazu gehört vor allem das Studium der einfachsten Fälle der drei Grundtypen von partiellen Differentialgleichungen zweiten Grades: Laplace-Gleichung, Wärmeleitungsgleichung und Wellengleichung.
Lernziel
Inhalt1.) Klassifizierung von PDE's
- linear, quasilinear, nicht-linear
- elliptisch, parabolisch, hyperbolisch

2.) Quasilineare PDE
- Methode der Charakteristiken (Beispiele)

3.) Elliptische PDE
- Bsp: Laplace-Gleichung
- Harmonische Funktionen, Maximumsprinzip, Mittelwerts-Formel.
- Methode der Variablenseparation.

4.) Parabolische PDE
- Bsp: Wärmeleitungsgleichung
- Bsp: Inverse Wärmeleitungsgleichung
- Methode der Variablenseparation

5.) Hyperbolische PDE
- Bsp: Wellengleichung
- Formel von d'Alembert in (1+1)-Dimensionen
- Methode der Variablenseparation

6.) Green'sche Funktionen
- Rechnen mit der Dirac-Deltafunktion
- Idee der Green'schen Funktionen (Beispiele)

7.) Ausblick auf numerische Methoden
- 5-Punkt-Diskretisierung des Laplace-Operators (Beispiele)
LiteraturY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)

Zusätzliche Literatur:
Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, Kap. 8, 11, 16 (sehr gutes Buch, als Referenz zu benutzen)
Norbert Hungerbühler, "Einführung in die partiellen Differentialgleichungen", vdf Hochschulverlag AG an der ETH Zürich.
G. Felder:Partielle Differenzialgleichungen.
http://www.math.ethz.ch/u/felder/Teaching/PDG
Voraussetzungen / BesonderesVoraussetzungen: Analysis I und II, Fourier Reihen (Komplexe Analysis)