Search result: Catalogue data in Spring Semester 2016

Computational Science and Engineering Bachelor Information
Fields of Specialization
Astrophysics
NumberTitleTypeECTSHoursLecturers
402-0394-00LTheoretical Astrophysics and CosmologyW10 credits4V + 2UL. M. Mayer, A. Refregier
AbstractThis is the second of a two course series which starts with "General Relativity" and continues in the spring with "Theoretical Astrophysics and Cosmology", where the focus will be on applying general relativity to cosmology as well as developing the modern theory of structure formation in a cold dark matter Universe.
Objective
ContentThe course will cover the following topics:
- Homogeneous cosmology
- Thermal history of the universe, recombination, baryogenesis and nucleosynthesis
- Dark matter and Dark Energy
- Inflation
- Perturbation theory: Relativistic and Newtonian
- Model of structure formation and initial conditions from Inflation
- Cosmic microwave background anisotropies
- Spherical collapse and galaxy formation
- Large scale structure and cosmological probes
LiteratureSuggested textbooks:
H.Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution
S. Carroll: Space-Time and Geometry: An Introduction to General Relativity
S. Dodelson: Modern Cosmology
Secondary textbooks:
S. Weinberg: Gravitation and Cosmology
V. Mukhanov: Physical Foundations of Cosmology
E. W. Kolb and M. S. Turner: The Early Universe
N. Straumann: General relativity with applications to astrophysics
A. Liddle and D. Lyth: Cosmological Inflation and Large Scale Structure
Prerequisites / NoticeKnowledge of General Relativity is recommended.
Physics of the Atmosphere
NumberTitleTypeECTSHoursLecturers
701-1216-00LNumerical Modelling of Weather and Climate Information W4 credits3GC. Schär, U. Lohmann
AbstractThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
ObjectiveThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
ContentThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction.

Hands-on experience with simple models will be acquired in the tutorials.
Lecture notesSlides and lecture notes will be made available at
Link
LiteratureList of literature will be provided.
Prerequisites / NoticePrerequisites: to follow this course, you need some basic background in numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L)
Chemistry
NumberTitleTypeECTSHoursLecturers
529-0474-00LQuantum ChemistryW6 credits3GM. Reiher
AbstractIntroduction into the basic concepts of electronic structure theory and into numerical methods of quantum chemistry. Exercise classes are designed to deepen the theory; practical case studies using quantum chemical software to provide a 'hands-on' expertise in applying these methods.
ObjectiveNowadays, chemical research can be carried out in silico, an intellectual achievement for which Pople and Kohn have been awarded the Nobel prize of the year 1998. This lecture shows how that has been accomplished. It works out the many-particle theory of many-electron systems (atoms and molecules) and discusses its implementation into computer programs. A complete picture of quantum chemistry shall be provided that will allow students to carry out such calculations on molecules (for accompanying experimental work in the wet lab or as a basis for further study of the theory).
ContentBasic concepts of many-particle quantum mechanics. Derivation of the many-electron theory for atoms and molecules; starting with the harmonic approximation for the nuclear problem and with Hartree-Fock theory for the electronic problem to Moeller-Plesset perturbation theory and configuration interaction and to coupled cluster and multi-configurational approaches. Density functional theory. Case studies using quantum mechanical software.
Lecture notesHand outs will be provided for each lecture (this script has been completely revised in spring 2014 anf has been supplemented by (computer) examples that continuously illustrate how the theory works).
LiteratureTextbooks on Quantum Chemistry:
F.L. Pilar, Elementary Quantum Chemistry, Dover Publications
I.N. Levine, Quantum Chemistry, Prentice Hall

Hartree-Fock in basis set representation:
A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill

Textbooks on Computational Chemistry:
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons
C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons
Prerequisites / Noticebasic knowledge in quantum mechanics (e.g. through course physical chemistry III - quantum mechanics) required
Fluid Dynamics
NumberTitleTypeECTSHoursLecturers
151-0208-00LComputational Methods for Flow, Heat and Mass Transfer ProblemsW4 credits2V + 2UP. Jenny
AbstractNumerical methods for the solution of flow, heat and mass transfer problems are presented and practised by analytical and computer solutions for simple examples.
Subjects: solution process, physical and mathematical models, basic equations, discretization methods, numerical solution of advection, diffusion and Poisson equations, turbulent flows.
ObjectiveKnowledge of and practical experience with important discretisation and solution methods for Computational Fluid Dynamics, Heat and Mass Transfer Problems
ContentAufbauend auf den Lehrveranstaltungen über Fluiddynamik, Thermodynamik, Computational Methods for Engineering Application I (empfehlenswertes Wahlfach, 4. Semester) und Informatik (Programmieren) werden numerische Methoden für Berechnungsaufgaben der Fluiddynamik, Energie- und Verfahrenstechnik dargestellt und an einfachen Beispielen geübt.

1. Einleitung
Uebersicht, Anwendungen
Problemlösungsprozess, Fehler
2. Rekapitulation der Grundgleichungen
Formulierung, Anfangs- und Randbedingungen
3. Numerische Diskretisierungsverfahren
Finite-Differenzen- und Finite-Volumen-Verfahren
Grundbegriffe: Konsistenz, Stabilität, Konvergenz
4. Lösung der grundlegenden Gleichungstypen
Wärmeleitungs/Diffusionsgleichung (parabolisch)
Poisson-Gleichung (elliptisch)
Advektionsgleichung/Wellengleichung (hyperbolisch)
und Advektions-Diffusions-Gleichung
5. Berechnung inkompressibler Strömungen
6. Berechnung turbulenter Strömungen
Lecture notesLecture notes are available (in German)
Literaturea list of references is supplied
Prerequisites / NoticeIt is crucial to actively solve the analytical and practical (programming) exercises.
Systems and Control
NumberTitleTypeECTSHoursLecturers
227-0216-00LControl Systems II Information W6 credits4GR. Smith
AbstractIntroduction to basic and advanced concepts of modern feedback control.
ObjectiveIntroduction to basic and advanced concepts of modern feedback control.
ContentThis course is designed as a direct continuation of the course "Regelsysteme" (Control Systems). The primary goal is to further familiarize students with various dynamic phenomena and their implications for the analysis and design of feedback controllers. Simplifying assumptions on the underlying plant that were made in the course "Regelsysteme" are relaxed, and advanced concepts and techniques that allow the treatment of typical industrial control problems are presented. Topics include control of systems with multiple inputs and outputs, control of uncertain systems (robustness issues), limits of achievable performance, and controller implementation issues.
Lecture notesThe slides of the lecture are available to download
LiteratureSkogestad, Postlethwaite: Multivariable Feedback Control - Analysis and Design. Second Edition. John Wiley, 2005.
Prerequisites / NoticePrerequisites:
Control Systems or equivalent
Robotics
NumberTitleTypeECTSHoursLecturers
151-0854-00LAutonomous Mobile Robots Information W5 credits4GR. Siegwart, M. Chli, M. Rufli
AbstractThe objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, envionmen perception, and probabilistic environment modeling, localizatoin, mapping and navigation. Theory will be deepened by exercises with small mobile robots and discussed accross application examples.
ObjectiveThe objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, envionmen perception, and probabilistic environment modeling, localizatoin, mapping and navigation.
Lecture notesThis lecture is enhanced by around 30 small videos introducing the core topics, and multiple-choice questions for continuous self-evaluation. It is developed along the TORQUE (Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness) concept, which is ETH's response to the popular MOOC (Massive Open Online Course) concept.
LiteratureThis lecture is based on the Textbook:
Introduction to Autonomous Mobile Robots
Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, Second Edition 2011, ISBN: 978-0262015356
151-0566-00LRecursive Estimation Information W4 credits2V + 1UR. D'Andrea
AbstractEstimation of the state of a dynamic system based on a model and observations in a computationally efficient way.
ObjectiveLearn the basic recursive estimation methods and their underlying principles.
ContentIntroduction to state estimation; probability review; Bayes' theorem; Bayesian tracking; extracting estimates from probability distributions; Kalman filter; extended Kalman filter; particle filter; observer-based control and the separation principle.
Lecture notesLecture notes available on course website: Link
Prerequisites / NoticeRequirements: Introductory probability theory and matrix-vector algebra.
252-0220-00LLearning and Intelligent Systems Information W8 credits4V + 2U + 1AA. Krause
AbstractThe course introduces the foundations of learning and making predictions based on data.
ObjectiveThe course will introduce the foundations of learning and making predictions from data. We will study basic concepts such as trading goodness of fit and model complexitiy. We will discuss important machine learning algorithms used in practice, and provide hands-on experience in a course project.
Content- Linear regression (overfitting, cross-validation/bootstrap, model selection, regularization, [stochastic] gradient descent)
- Linear classification: Logistic regression (feature selection, sparsity, multi-class)
- Kernels and the kernel trick (Properties of kernels; applications to linear and logistic regression; k-NN
- The statistical perspective (regularization as prior; loss as likelihood; learning as MAP inference)
- Statistical decision theory (decision making based on statistical models and utility functions)
- Discriminative vs. generative modeling (benefits and challenges in modeling joint vy. conditional distributions)
- Bayes' classifiers (Naive Bayes, Gaussian Bayes; MLE)
- Bayesian networks and exact inference (conditional independence; variable elimination; TANs)
- Approximate inference (sum/max product; Gibbs sampling)
- Latent variable models (Gaussian Misture Models, EM Algorithm)
- Temporal models (Bayesian filtering, Hidden Markov Models)
- Sequential decision making (MDPs, value and policy iteration)
- Reinforcement learning (model-based RL, Q-learning)
LiteratureTextbook: Kevin Murphy: A Probabilistic Perspective, MIT Press
Prerequisites / NoticeDesigned to provide basis for following courses:
- Advanced Machine Learning
- Data Mining: Learning from Large Data Sets
- Probabilistic Artificial Intelligence
- Probabilistic Graphical Models
- Seminar "Advanced Topics in Machine Learning"
Physics
NumberTitleTypeECTSHoursLecturers
402-0812-00LComputational Statistical Physics Information W8 credits2V + 2UH. J. Herrmann
AbstractComputer simulation methods in statistical physics. Classical Monte-Carlo-simulations: finite-size scaling, cluster algorithms, histogram-methods. Molecular dynamics simulations: long range interactions, Ewald summation, discrete elements, parallelization.
ObjectiveThe lecture will give a deeper insight into computer simulation methods in statistical physics. Thus, it is an ideal continuation of the lecture
"Introduction to Computational Physics" of the autumn semester focusing on the following topics. Classical Monte-Carlo-simulations: finite-size scaling, cluster algorithms, histogram-methods. Molecular dynamics simulations: long range interactions, Ewald summation, discrete elements, parallelization.
ContentComputer simulation methods in statistical physics.
Classical Monte-Carlo-simulations: finite-size scaling, cluster algorithms, histogram-methods. Molecular dynamics simulations: long range interactions, Ewald summation, discrete elements, parallelization.
402-0810-00LComputational Quantum PhysicsW8 credits2V + 2US. Huber
AbstractThis course provides an introduction to simulation methods for quantum systems, starting with the one-body problem and finishing with quantum field theory, with special emphasis on quantum many-body systems. Both approximate methods (Hartree-Fock, density functional theory) and exact methods (exact diagonalization, quantum Monte Carlo) are covered.
ObjectiveThe goal is to become familiar with computer simulation techniques for quantum physics, through lectures and practical programming exercises.
327-5102-00LMolecular and Materials Modelling Information W4 credits2V + 2UJ. VandeVondele, D. Passerone
Abstract"Molecular and Materials Modelling" introduces the basic techniques to interpret experiments with contemporary atomistic simulation. These techniques include force fields or density functional theory (DFT) based molecular dynamics and Monte Carlo. Structural and electronic properties, thermodynamic and kinetic quantities, and various spectroscopies will be simulated for nanoscale systems.
ObjectiveThe ability to select a suitable atomistic approach to model a nanoscale system, and to employ a simulation package to compute quantities providing a theoretically sound explanation of a given experiment. This includes knowledge of empirical force fields and insight in electronic structure theory, in particular density functional theory (DFT). Understanding the advantages of Monte Carlo and molecular dynamics (MD), and how these simulation methods can be used to compute various static and dynamic material properties. Basic understanding on how to simulate different spectroscopies (IR, STM, X-ray, UV/VIS). Performing a basic computational experiment: interpreting the experimental input, choosing theory level and model approximations, performing the calculations, collecting and representing the results, discussing the comparison to the experiment.
Lecture notesA script will be made available.
LiteratureD. Frenkel and B. Smit, Understanding Molecular Simulations, Academic Press, 2002.

M. P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Oxford University Press 1990.

Andrew R. Leach, Molecular Modelling, principles and applications, Pearson, 2001
Computational Finance
No course offerings in this semester.
Electromagnetics
NumberTitleTypeECTSHoursLecturers
227-0366-00LIntroduction to Computational Electromagnetics Information W6 credits4GC. Hafner, J. Leuthold, J. Smajic
AbstractAn overview over the most prominent methods for the simulation of electromagnetic fields is given This includes domain methods such as finite differences and finite elements, method of moments, and boundary methods. Both time domain and frequency domain techniques are considered.
ObjectiveOverview of numerical methods for the simulation of electromagnetic fields and hands-on experiments with selected methods.
ContentOverview of concepts of the main numerical methods for the simulation of electromagnetic fields: Finite Difference Method, Finite Element Method, Transmission Line Matrix Method, Matrix Methods, Multipole Methods, Image Methods, Method of Moments, Integral Equation Methods, Beam Propagation Method, Mode Matching Technique, Spectral Domain Analysis, Method of Lines. Applications: Problems in electrostatic and magnetostatic, guided waves and free-space propagation problems, antennas, resonators, inhomogeneous transmissionlLines, nanotechnic, optics etc.
Lecture notesDownload from: Link
Prerequisites / NoticeFirst half of the semester: lectures; second half of the semester: exercises in form of small projects
Geophysics
Recommended combinations:
Subject 1 + Subject 2
Subject 1 + Subject 3
Subject 2 + Subject 3
Subject 3 + Subject 4
Subject 5 + Subject 6
Subject 5 + Subject 4
Geophysics: Subject 1
offered in the autumn semester
Geophysics: Subject 2
offered in the autumn semester
Geophysics: Subject 3
NumberTitleTypeECTSHoursLecturers
651-4008-00LDynamics of the Mantle and LithosphereW3 credits2GD. A. May
AbstractThe goal of this course is to obtain a detailed understanding of the physical properties, structure, and dynamical behavior of the mantle-lithosphere system, focusing mainly on Earth but also discussing how these processes occur differently in other terrestrial planets.
ObjectiveThe goal of this course is to obtain a detailed understanding of the physical properties, structure, and dynamical behavior of the mantle-lithosphere system, focusing mainly on Earth but also discussing how these processes occur differently in other terrestrial planets.
Geophysics: Subject 4
recognition requires the successful completion of both course units
NumberTitleTypeECTSHoursLecturers
651-4094-00LNumerical Modelling for Applied Geophysics IW3 credits2GJ. Robertsson
AbstractThis course provides an introduction to numerical modelling techniques as they are employed in many projects in Applied Geophysics. The focus is rather on the basic principles and applications than on rigorous mathematical proofs. Prerequisites for this course include (i) basic knowledge of vector analysis and Fourier transform techniques and (ii) knowledge of Matlab (required for the exercises).
ObjectiveAfter this course the students should have a good overview of the numerical modelling techniques that are commonly applied in Applied Geophysics. They should be familiar with the basic principles of the methods. Furthermore, they should know advantages and disadvantages as well as the limitations of the individual approaches.
ContentDuring the first part of the course, the following topics are covered:
- General issues about finite precision of numerical modeling
- Potential field modeling
- Layered Earth modeling using transform methods
- Finite differences
- Finite elements
- Other numerical methods

Most of these modules are accompanied by exercises

Small projects will be assigned to the students. They either include a programming exercise or applications of existing modelling codes.
Lecture notesPresentation slides and some background material will be provided.
Prerequisites / NoticeThis course is offered as a half-semester course during the first part of the semester
651-4096-00LInverse Theory for Geophysics I: BasicsW3 credits2VH. Maurer, A. Fichtner
AbstractThis course provides an introduction to inversion theory. The focus is rather on the basic principles and applications than on rigorous mathematical proofs. Prerequisites for this course include (i) basic knowledge of analysis and linear algebra and (ii) knowledge of Matlab (required for the exercises).
ObjectiveAfter this course the students should have a good grasp of geophysical inversion problems. In particular, they should be familiar with linear and non-linear inversion techniques. Most importantly, they should be aware of potential pitfalls and limitations of the methods.
ContentDuring this course, the following topics are covered:

- Introduction to geophysical inversion
- Matrix inversion techniques
- Linear inversion problems
- Non-linear inversion problems
- Probabilistic inversion approaches
- Global optimizers

Most of these modules are accompanied by exercises
Lecture notesPresentation slides and some background material will be provided.
Prerequisites / NoticeThis course is offered as a half-semester course during the first part of the semester
Geophysics: Subject 5
offered in the autumn semester
Geophysics: Subject 6
NumberTitleTypeECTSHoursLecturers
651-4006-00LSeismology of the Spherical EarthW3 credits2GA. Fichtner, M. van Driel
AbstractBrief review of continuum mechanics and earthquake modeling. Approaches to solving the momentum equation in realistic Earth models, or ways to calculate a theoretical seismogram: homogeneous wave equation; P and S waves; eikonal equation and ray tracing; surface-wave solutions; normal-mode solutions; numerical solutions.
ObjectiveAfter taking this course, students will have the background knowledge necessary to start an original research project in global theoretical seismology.
LiteratureAki, K. and P. G. Richards, Quantitative Seismology, second edition, University Science Books, Sausalito, 2002.
Dahlen, F. A. and J. Tromp, Theoretical Global Seismology, Princeton University Press, Princeton, 1998.
Lay, T. and T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, 1995.
Shearer, P., Introduction to Seismology, Cambridge University Press, 1999.
Udias, A., Principles of Seismology, Cambridge University Press, 1999.
Biology
NumberTitleTypeECTSHoursLecturers
636-0702-00LStatistical Models in Computational Biology
Does not take place this semester.
W5 credits2V + 1UN. Beerenwinkel
AbstractThe course offers an introduction to graphical models and their application to complex biological systems. Graphical models combine a statistical methodology with efficient algorithms for inference in settings of high dimension and uncertainty. The unifying graphical model framework is developed and used to examine several classical and topical computational biology methods.
ObjectiveThe goal of this course is to establish the common language of graphical models for applications in computational biology and to see this methodology at work for several real-world data sets.
ContentGraphical models are a marriage between probability theory and graph theory. They combine the notion of probabilities with efficient algorithms for inference among many random variables. Graphical models play an important role in computational biology, because they explicitly address two features that are inherent to biological systems: complexity and uncertainty. We will develop the basic theory and the common underlying formalism of graphical models and discuss several computational biology applications. Topics covered include conditional independence, Bayesian networks, Markov random fields, Gaussian graphical models, EM algorithm, junction tree algorithm, model selection, Dirichlet process mixture, causality, the pair hidden Markov model for sequence alignment, probabilistic phylogenetic models, phylo-HMMs, microarray experiments and gene regulatory networks, protein interaction networks, learning from perturbation experiments, time series data and dynamic Bayesian networks. Some of the biological applications will be explored in small data analysis problems as part of the exercises.
Lecture notesno
Literature- Airoldi EM (2007) Getting started in probabilistic graphical models. PLoS Comput Biol 3(12): e252. doi:10.1371/journal.pcbi.0030252
- Bishop CM. Pattern Recognition and Machine Learning. Springer, 2007.
- Durbin R, Eddy S, Krogh A, Mitchinson G. Biological Sequence Analysis. Cambridge university Press, 2004
636-0706-00LSpatio-Temporal Modelling in Biology Information W5 credits3GD. Iber
AbstractThis course focuses on modeling spatio-temporal problems in biology, in particular on the cell and tissue level. A wide range of mathematical techniques will be presented as part of the course, including concepts from non-linear dynamics (ODE and PDE models), stochastic techniques (SDE, Master equations, Monte Carlo simulations), and thermodynamic descriptions.
ObjectiveThe aim of the course is to introduce students to state-of-the-art mathematical modelling of spatio-temporal problems in biology. Students will learn how to chose from a wide range of modelling techniques and how to apply these to further our understanding of biological mechanisms. The course aims at equipping students with the tools and concepts to conduct successful research in this area; both classical as well as recent research work will be discussed.
Content1. Introduction to Modelling in Biology
2. Morphogen Gradients
3. Turing Pattern
4. Travelling Waves & Wave Pinning
5. Application Example 1: Dorso-ventral axis formation
6. Chemotaxis, Cell Adhesion & Migration
7. Introduction to Numerical Methods
8. Simulations on Growing Domains
9. Image-Based Modelling
10. Branching Processes
11. Cell-based Simulation Frameworks
12. Application Example 2: Limb Development
13. Summary
Lecture notesAll lecture material will be made available online Link
LiteratureMurray, Mathematical Biology, Springer
Forgacs and Newman, Biological Physics of the Developing Embryo, CUP
Keener and Sneyd, Mathematical Physiology, Springer
Fall et al, Computational Cell Biology, Springer
Szallasi et al, System Modeling in Cellular Biology, MIT Press
Wolkenhauer, Systems Biology
Kreyszig, Engineering Mathematics, Wiley
Prerequisites / NoticeThe course builds on introductory courses in Computational Biology. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.
  •  Page  1  of  1