Search result: Catalogue data in Spring Semester 2016

Interdisciplinary Sciences Bachelor Information
Physical-Chemical Direction
2. Semester (Physical-Chemical Direction)
Compulsory Subjects First Year Examinations
NumberTitleTypeECTSHoursLecturers
401-1262-07LAnalysis IIO10 credits6V + 3UH. Knörrer
AbstractIntroduction to differential and integral calculus in several real variables, vector calculus: differential, partial derivative, implicit functions, inverse function theorem, minima with constraints; Riemann integral, vector fields, differential forms, path integrals, surface integrals, divergence theorem, Stokes' theorem.
Objective
ContentCalculus in several variables; curves and surfaces in R^n; extrema with constraints; integration in n dimensions; vector calculus.
Lecture notesStruwe: Analysis I/II, siehe
Link
LiteratureK. Koenigsberger: Analysis II, Springer-Verlag

R. Courant: Vorlesungen ueber Differential- und Integralrechnung.
Springer Verlag

V. Zorich: Analysis II. Springer Verlag 2006
Link
Chr. Blatter: Analysis. Link

H. Heuser: Lehrbuch der Analysis. Teubner Verlag
W. Walter: Analysis 2. Springer Verlag
O. Forster: Analysis II. Vieweg Verlag

J.Appell: Analysis in Beispielen und Gegenbeispielen. Springer Verlag
Link

Thomas Michaels: Analysis 2 (mit vielen gerechneten Beispielen).
Editres A.a.g.l. Lugano 2015
401-1152-00LLinear Algebra IIO7 credits4V + 2UE. Kowalski
AbstractDeterminants, eigenvalues and eigenvectors, Jordan normal form, bilinear forms, euclidean and unitary vector spaces, selected applications.
ObjectiveBasic knowledge of the fundamentals of linear algebra.
402-1782-00LPhysics II
Accompanying the lecture course "Physics II", among GESS Compulsory Electives is offered: 851-0147-01L Philosophical Reflections on Physics II
O7 credits4V + 2UK. S. Kirch
AbstractIntroduction to theory of waves, electricity and magnetism. This is the continuation of Physics I which introduced the fundamentals of mechanics.
Objectivebasic knowledge of mechanics and electricity and magnetism as well as the capability to solve physics problems related to these subjects.
529-0012-01LPhysical Chemistry I: Thermodynamics Information O4 credits3V + 1UF. Merkt
AbstractFoundations of chemical thermodynamics. The first, second and third law of thermodynamics: Thermodynamic temperature scale, internal energy, enthalpy, entropy, the chemical potential. Solutions and mixtures, phase diagrams. Reaction thermodynamics: reaction parameters and equilibrium conditions, equilibrium constants. Thermodynamics of processes at surfaces and interfaces.
ObjectiveIntroduction to chemical thermodynamics
ContentThe first, second and third law of thermodynamics: empirical temperature and thermodynamic temperature scale, internal energy, entropy, thermal equilibrium. Models and standard states: ideal gases, ideal solutions and mixtures, real gases, real solutions and mixtures, activity, tables of standard thermodynamic quantities. Reaction thermodynamics: the chemical potential, reaction parameters and equilibrium conditions, equilibrium constants and their pressure and temperature dependence. Phase equilibria. Thermodynamics at surfaces and interfaces: Adsorption equilibria. Capillary forces. Adsorption isothermes.
Lecture notesIn preparation.
LiteratureA list of possible text books will be provides as separate documents in the lecture.
Prerequisites / NoticeVoraussetzungen: Allgemeine Chemie I, Grundlagen der Mathematik
Additional First Year Subjects
NumberTitleTypeECTSHoursLecturers
529-0012-03LGeneral Chemistry (Organic Chemistry) IIZ4 credits3V + 1UP. Chen, A. Bach
AbstractClassification of organic reactions, reactive intermediates: radicals, carbocations, carbanions, organic acids / bases, electronic substituent effects, electrophilic aromatic substitution, electrophilic addition to double bonds, HSAB concept, nucleophilic substitution at sp3 hybridized carbon centres (SN1/SN2 reactions), nucleophilic aromatic substitutions, eliminations.
ObjectiveUnderstanding of fundamental reactivity principles and the relationship between structure and reactivity. Knowledge of the most important raection types and of selected classes of compounds.
ContentClassification of organic reactions, reactive intermediates: radicals, carbocations, carbanions, organic acids / bases, electronic substituent effects, electrophilic aromatic substitution, electrophilic addition to double bonds, HSAB concept, nucleophilic substitution at sp3 hybridized carbon centres (SN1/SN2 reactions), nucleophilic aromatic substitutions, eliminations.
Lecture notespdf file available at the beginning of the course
Literature[1] P. Sykes, "Reaktionsmechanismen der Organischen Chemie", VCH Verlagsgesellschaft, Weinheim 1988.
[2] Carey/Sundberg, Advanced Organic Chemistry, Part A and B, 3rd ed., Plenum Press, New York, 1990/1991. Deutsch: Organische Chemie.
[3] Vollhardt/Schore, Organic Chemistry, 2th ed., Freeman, New York, 1994 Deutsche Fassung: Organische Chemie 1995, Verlag Chemie, Wein¬heim, 1324 S. Dazu: N. Schore, Arbeitsbuch zu Vollhardt, Organische Chemie, 2. Aufl. Verlag Chemie, Weinheim, 1995, ca 400 S.
[4] J. March, Advanced Organic Chemistry; Reactions, Mechanisms, and Structure, 5th ed., Wiley, New York, 1992.
[5] Streitwieser/Heathcock, Organische Chemie, 2. Auflage, Verlag Chemie, Weinheim, 1994.
[6] Streitwieser/Heathcock/Kosower, Introduction to Organic Chemistry, 4th ed., MacMillan Publishing Company, New York, 1992.
[7] P. Y. Bruice, Organische Chemie, 5. Auflage, Pearson Verlag, 2007.
529-0012-02LGeneral Chemistry (Inorganic Chemistry) IIZ4 credits3V + 1UH. Grützmacher, W. Uhlig
Abstract1) General definitions 2) The VSEPR model 3) Qualitative molecular orbital diagrams 4) Closest packing, metal structures 5) The Structures of metalloids
6) Structures of the non-metals 7) Synthesis of the elements 8) Reactivity of the elements 9) Ionic Compounds 10) Ions in Solution 11) Element hydrogen compounds 12) Element halogen compounds 13) Element oxygen compounds 14) Redox chemistry
ObjectiveUnderstanding of the fundamental principles of the structures, properties, and reactivities of the main group elements (groups 1,2 and 13 to 18).
ContentThe course is divided in 14 sections in which the fundamental phenomena of the chemistry of the main group elements are discussed: Part 1: Introduction in the periodical properties of the elements and general definitions. – Part 2: The VSEPR model – Part 3: Qualitative molecular orbital diagrams for simple inorganic molecules – Part 4: Closest packing and structures of metals. – Part 5: The Structures of semimetals (metalloids) of the main group elements – Part 6: Structures of the non-metals– Part 7: Synthesis of the elements. – Part 8: Reactivity of the elements. – Part 9: Ionic Compounds. – Part 10: Ions in Solution. – Part 11: Element hydrogen compounds. – Part 12: Element halogen compounds. – Part 13: Element oxygen compounds. – Part 14: Redox chemistry.
Lecture notesThe transparencies used in the course are accessible via the internet on Link
LiteratureJ. Huheey, E. Keiter, R. Keiter, Inorganic Chemistry, Principles and Reactivity, 4th edition, deGruyter, 2003.

C.E.Housecroft, E.C.Constable, Chemistry, 4th edition, Pearson Prentice Hall, 2010.
Prerequisites / NoticeBasis for the understanding of this lecture is the course Allgemeine Chemie 1.
4. Semester (Physical-Chemical Direction)
Compulsory Subjects
NumberTitleTypeECTSHoursLecturers
529-0431-00LPhysical Chemistry III: Molecular Quantum Mechanics Restricted registration - show details O4 credits4GB. H. Meier, M. Ernst
AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
Lecture notesA script written in German will be distributed. The script is, however, no replacement for personal notes during the lecture and does not cover all aspects discussed.
Electives
For the Bachelor in Interdisciplinary Sciences students can in principle choose from all subjects taught at the Bachelor level at ETH Zurich.

At the beginning of the 2. year an individual study program is established for every student in discussion with the Director of Studies in interdisciplinary sciences. For details see Programme Regulations 2010.
NumberTitleTypeECTSHoursLecturers
529-0230-00LInorganic and Organic Chemistry I Restricted registration - show details
Enrolment only possible up to the beginning of the semester.
W8 credits12PJ. W. Bode
AbstractLaboratory Course in Inorganic and Organic Chemistry I
ObjectiveIntroduction into basic techniques used in the organic laboratory. Understanding organic reactions through experiments.
ContentPart I: Basic operations such as the isolation, purification and characterization of organic compounds: distillation, extraction, chromatography, crystallization, IR (UV/1H-NMR)-spectroscopy for the identification of the constituion of organic compounds.

Part II: Organic reactions: preparative chemistry. From simple, one-step to multistep syntheses. Both classic and modern reactions will be performed.

Part III: Preparation of a chiral, enantiomerically pure ligand for asymmetric catalysis (together with AOCP II)
Literature- R. K. Müller, R. Keese: "Grundoperationen der präparativen organischen Chemie"; J. Leonard, B. Lygo, G. Procter: "Praxis der Organischen Chemie" (Übersetzung herausgegeben von G. Dyker), VCH, Weinheim, 1996, ISBN 3-527-29411-2.
Prerequisites / NoticeVoraussetzungen:
- Praktikum Allgemeine Chemie (1. Semester, 529-0011-04/05)
- Vorlesung Organische Chemie I (1. Semester, 529-0011-03)
529-0058-00LAnalytical Chemistry IIW3 credits3GD. Günther, M.‑O. Ebert, P. Lienemann, R. J. Looser, G. Schwarz
AbstractEnhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.
ObjectiveUse and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems.
ContentCombined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS.
Lecture notesScript will be available
LiteratureLiterature will be within the script
Prerequisites / NoticeExercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended.
Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester)
529-0122-00LInorganic Chemistry IIW3 credits3GM. Kovalenko, M. L. Viciu
AbstractThe lecture is based on Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers, i.e. crystal structures.
ObjectiveThe lecture is based on Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers.
ContentSymmetry aspects of chemical bonding, point groups and representations for the deduction of molecular orbitals, energy assessment for molecules and solids, Sanderson formalism, derivation and understanding of band structures, densities of states, overlap populations, crystal symmetry, basic crystal structures and corresponding properties, visual representations of crystal structures.
Lecture notesAdditional information is available on the internet at:
Link
user: aach
password: jsenpw
Literature1. I. Hargittai, M. Hargittai, "Symmetry through the Eyes of a Chemist", Plenum Press, 1995;
2. R. Hoffmann, "Solids and Surfaces", VCH 1988;
3. U. Müller, "Anorganische Strukturchemie", 6. Auflage, Vieweg + Teubner 2008
Prerequisites / NoticeRequirements: Inorganic Chemistry I
529-0222-00LOrganic Chemistry IIW3 credits2V + 1UJ. W. Bode
AbstractOxidation of organic compounds; reductions; one electron transfer reactions; pericyclic reactions; cycloadditions; sigmatropic rearrangements; sextett rearrangements and related reactions; organometallic chemistry; application of the reactions in natural product synthesis
ObjectiveIn this course the major classes of organic transformations will be discussed and illustrated with pertinent examples. Oxidation and reduction reactions will be covered in the first part of the course and this will be followed by a survey of one-electron tranfer processes. The structure and reactivity of nitrenes and carbenes (reactive intermediates) will be described in the second section of the course. Pericyclic reactions will be covered in part three of the course and students will given an overview of preparative organometallic chemistry. The final section of the course includes and introduction to complex molecule synthesis and retrosynthetic analysis.
ContentThe Woodward-Hoffmann rules, electrocyclic reactions, sigmatropic rearrangements, cycloaddition reactions with detailed focus on the Diels-Alder reaction and 1,3 dipolar cycloadditions, oxidation and reduction, dissolving metal reductions, radical reactions, photochemical reactions, introduction to organometallic chemistry.
Lecture notesKeine; es wird erwartet, dass die Studenten den in der Vorlesung behandelten Stoff kennen und mit den gelehrten Prinzipien und Grundlagen umgehen können.
LiteratureKeine; es wird erwartet, dass die Studenten den in der Vorlesung behandelten Stoff kennen und mit den gelehrten Prinzipien und Grundlagen umgehen können.
401-1662-10LIntroduction to Numerical Methods Information W6 credits4G + 2UV. C. Gradinaru
AbstractThis course gives an introduction to numerical methods, aimed at physics majors. It covers numerical linear algebra, quadrature, interpolation and approximation methods as well as initial vaule problems. The focus is on the ability to apply the numerical methods.
ObjectiveOverview on the most important algorithms for the solution of the fundamental numerical problems in Physics and applications;
overview on available software for the numerical solutions;
ability to solve concrete problems
ability to interpret numerical results
ContentInterpolation, least squares (linear and non-linear), nonlinear equations,
fast Fourier transformation, numerical quadrature, initial value problems.
Lecture notesNotes, slides and other relevant materials will be available via the web page of the lecture.
LiteratureRelevant materials will be available via the web page of the lecture.
Prerequisites / NoticePrerequisite is familiarity with basic calculus (approximation theory and vector calculus: grad, div, curl) and linear algebra (Gauss-elimination, matrix decompositions and algorithms, determinant)
651-0102-00LCrystallography Practical (Basics) Restricted registration - show details W2 credits4PT. Weber
AbstractSingle crystal structures from current scientific projects will be characterized using modern x-ray techniques.
ObjectiveApplication of x-ray scattering methods in crystallography and mineralogy
ContentStructural investigation of single crystals. Evaluation of scattering patterns (lattice constants, systematic extinctions, reflection intensities). Experiments with automatic single crystal diffractometers. Determination and refinement of simple crystal structures.
Prerequisites / NoticePrecondition: lectures on crystallography or x-ray structure determination (e.g. Crystallography I)
401-2334-00LMethods of Mathematical Physics IIW6 credits3V + 2UG. Felder
AbstractGroup theory: groups, representation of groups, unitary and orthogonal groups, Lorentz group. Lie theory: Lie algebras and Lie groups. Representation theory: representation theory of finite groups, representations of Lie algebras and Lie groups, physical applications (eigenvalue problems with symmetry).
Objective
402-0275-00LQuantum Electronics Information W10 credits3V + 2UU. Keller
AbstractClassical and semi-classical introduction to Quantum Electronics. Mandatory for further elective courses in Quantum Electronics. The field of Quantum Electronics describes propagation of light and its interaction with matter. The emphasis is set on linear pulse and beam propagation in dispersive media, optical anisotropic materials, and waveguides and lasers.
ObjectiveTeach the fundamental building blocks in Quantum Electronics.
ContentInterference and coherence
Wave propagation in dispersive materials
Linear pulse propagation
Fourier optics
Fundamentals of lasers
Linear wave propagation in anisotropic materials
Waveguides and integrated optics
Nonlinear optics
Lecture notesScripts will be distributed in class (online)
Link
LiteratureReference:
Saleh, B.E.A., Teich, M.C.; Fundamentals of Photonics, John Wiley & Sons, Inc., newest edition

Additional reference:
Siegman, A.E.; Lasers, University Science Books, Mill Valley, California Latest edition
Prerequisites / NoticeMandatory lecture for physics students

Prerequisites (minimal): vector analysis, differential equations, Fourier transformation
252-0002-00LData Structures and Algorithms Information W7 credits4V + 2UP. Widmayer
AbstractThis course is about fundamental algorithm design paradigms (such as induction, divide-and-conquer, backtracking, dynamic programming), classic algorithmic problems (such as sorting and searching), and data structures (such as lists, hashing, search trees). The connection between algorithms and data structures is explained for geometric and graph problems.
ObjectiveAn understanding of the design and analysis of fundamental algorithms and data structures.
ContentEs werden grundlegende Algorithmen und Datenstrukturen vorgestellt und analysiert. Dazu gehören auf der einen Seite Entwurfsmuster für Algorithmen, wie Induktion, divide-and-conquer, backtracking und dynamische Optimierung, ebenso wie klassische algorithmische Probleme, wie Suchen und Sortieren. Auf der anderen Seite werden Datenstrukturen für verschiedene Zwecke behandelt, darunter verkettete Listen, Hashtabellen, balancierte Suchbäume, verschiedene heaps und union-find-Strukturen. Weiterhin wird Adaptivität bei Datenstrukturen (wie etwa Splay-Bäume) und bei Algorithmen (wie etwa online-Algorithmen) beleuchtet. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert.
LiteratureTh. Ottmann, P.Widmayer: Algorithmen und Datenstrukturen, Spektrum-Verlag, 5. Auflage, Heidelberg, Berlin, Oxford, 2011
Prerequisites / NoticeVoraussetzung:
252-0021-00L Einführung in die Programmierung
529-0442-00LAdvanced KineticsW6 credits3GH. J. Wörner
AbstractThis lecture covers the quantum-dynamical foundations of chemical reaction kinetics and introduces the experimental methods of time-resolved molecular spectroscopy.
ObjectiveThis lecture provides the conceptual foundations of chemical reaction dynamics and shows how primary molecular processes can be studied experimentally.
ContentQuantum dynamics of molecules as primary process of chemical reactions: multilevel quantum beats, quantum scattering, autoionization, predissociation, non-radiative transitions. Foundations of statistical mechanics, Pauli equations, microcanonical equilibrium and entropy. Energy levels and kinetics of polyatomic molecules, relaxation and irreversibility. Generalized transition state theory of chemical reactions, statistical adiabatic channel model, variational transition state theory.
Survey of advanced experimental techniques for the study of chemical reactions (time resolved spectroscopies on pico- to attosecond time scales, molecular beam methods). Photochemical reactions and photochemical primary processes. Advanced applications to simple and complex molecular systems and to biological problems.
Lecture notesWill be available online.
LiteratureD. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective
R. D. Levine, Molecular Reaction Dynamics
S. Mukamel, Principles of Nonlinear Optical Spectroscopy
Z. Chang, Fundamentals of Attosecond Optics
Prerequisites / Notice529-0422-00L Physical Chemistry II: Chemical Reaction Dynamics
551-0106-00LFundamentals of Biology IBW5 credits5GS. C. Zeeman, W. Krek, J. Levine, O. Y. Martin, G. Velicer, A. Wutz
AbstractThis course is an introduction into the basic principles of evolution, diversity, animal/plant form and function, and ecology.
ObjectiveIntroduction into aspects of modern biology and fundamental biological concepts.
ContentThe course is divided into distinct chapters
1. Mechanisms of evolution.
2. The evolutionary history of biological diversity (bacteria and archea, protists, plants and animals).
3. Plant form and function (growth and development, nutrient and resource acquisition, reproduction and environmental responses).
4. Animal form and function (nutrition, immune system, hormones, reproduction, nervous system and behaviour).
5. Ecology (population ecology, community ecology, ecosystems and conservation ecology).
Lecture notesNo script
LiteratureThis course is based on the textbook 'Biology' (Campbell, Reece, 9th edition). The structure of the course follows that of the book. It is recommended to purchase the English version.
Prerequisites / NoticePart of the contents of the book need to be learned through independent study.
551-0108-00LFundamentals of Biology II: Plant BiologyW2 credits2VW. Gruissem, O. Voinnet, S. C. Zeeman
AbstractWater balance, assimilation, transport in plants; developmental biology, stress physiology.
ObjectiveWater balance, assimilation, transport in plants; developmental biology, stress physiology.
Lecture notesPlant Biology: Handouts of the powerpoint presentation will be distributed. It can also be viewed in a password-protected web link.
LiteratureSmith, A.M., et al.: Plant Biology, Garland Science, New York, Oxford, 2010
551-0110-00LFundamentals of Biology II: MicrobiologyW2 credits2VJ. Vorholt-Zambelli, W.‑D. Hardt, J. Piel
Abstract-Structure, function, genetics of prokaryotic microorganisms and fungi.
ObjectiveBasic principles of cell structure, growth physiology, energy metabolism, gene expression. Biodiversity of Bacteria and Archaea in the carbon, nitrogen, and sulfur cycles in nature. Phylogeny and evolution. Developmental biology of fungi.
ContentBasic principles of cell structure, growth physiology, energy metabolism, gene expression. Biodiversity of Bacteria and Archaea in the carbon, nitrogen, and sulfur cycles in nature. Phylogeny and evolution. Developmental biology of fungi.
LiteratureBrock, Biology of Microorganisms (Madigan, M.T. and Martinko, J.M., eds.), 11th ed., Pearson Prentice Hall, 2006
  •  Page  1  of  2 Next page Last page     All