From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

Search result: Catalogue data in Spring Semester 2016

Chemistry Bachelor Information
4. Semester
Compulsory Subjects Examination Block I
529-0122-00LInorganic Chemistry IIO3 credits3GM. Kovalenko, M. L. Viciu
AbstractThe lecture is based on Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers, i.e. crystal structures.
ObjectiveThe lecture is based on Inorganic Chemistry I and addresses an enhanced understanding of the symmetry aspects of chemical bonding of molecules and translation polymers.
ContentSymmetry aspects of chemical bonding, point groups and representations for the deduction of molecular orbitals, energy assessment for molecules and solids, Sanderson formalism, derivation and understanding of band structures, densities of states, overlap populations, crystal symmetry, basic crystal structures and corresponding properties, visual representations of crystal structures.
Lecture notesAdditional information is available on the internet at:
user: aach
password: jsenpw
Literature1. I. Hargittai, M. Hargittai, "Symmetry through the Eyes of a Chemist", Plenum Press, 1995;
2. R. Hoffmann, "Solids and Surfaces", VCH 1988;
3. U. Müller, "Anorganische Strukturchemie", 6. Auflage, Vieweg + Teubner 2008
Prerequisites / NoticeRequirements: Inorganic Chemistry I
529-0222-00LOrganic Chemistry IIO3 credits2V + 1UJ. W. Bode
AbstractOxidation of organic compounds; reductions; one electron transfer reactions; pericyclic reactions; cycloadditions; sigmatropic rearrangements; sextett rearrangements and related reactions; organometallic chemistry; application of the reactions in natural product synthesis
ObjectiveIn this course the major classes of organic transformations will be discussed and illustrated with pertinent examples. Oxidation and reduction reactions will be covered in the first part of the course and this will be followed by a survey of one-electron tranfer processes. The structure and reactivity of nitrenes and carbenes (reactive intermediates) will be described in the second section of the course. Pericyclic reactions will be covered in part three of the course and students will given an overview of preparative organometallic chemistry. The final section of the course includes and introduction to complex molecule synthesis and retrosynthetic analysis.
ContentThe Woodward-Hoffmann rules, electrocyclic reactions, sigmatropic rearrangements, cycloaddition reactions with detailed focus on the Diels-Alder reaction and 1,3 dipolar cycloadditions, oxidation and reduction, dissolving metal reductions, radical reactions, photochemical reactions, introduction to organometallic chemistry.
Lecture notesKeine; es wird erwartet, dass die Studenten den in der Vorlesung behandelten Stoff kennen und mit den gelehrten Prinzipien und Grundlagen umgehen können.
LiteratureKeine; es wird erwartet, dass die Studenten den in der Vorlesung behandelten Stoff kennen und mit den gelehrten Prinzipien und Grundlagen umgehen können.
529-0431-00LPhysical Chemistry III: Molecular Quantum Mechanics Restricted registration - show details O4 credits4GB. H. Meier, M. Ernst
AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
Lecture notesA script written in German will be distributed. The script is, however, no replacement for personal notes during the lecture and does not cover all aspects discussed.
402-0044-00LPhysics IIO4 credits3V + 1UM. R. Meyer
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: electromagnetism, optics, introduction to modern physics.
ObjectiveThe concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.
ContentElectromagnetism (electric current, magnetic fields, electromagnetic induction, magnetic materials, Maxwell's equations), Optics (light, geometrical optics, interference and diffraction), and Introduction to quantum physics
Lecture notesThe lecture follows the book "Physics for Scientists and Engineers" by Paul A. Tipler and Gene Mosca (6th edition).
LiteraturePhysics for Scientists and Engineers" by Paul A. Tipler and Gene Mosca (6th edition). There is also a similar book in German published by Spektrum Akademischer Verlag authored under the permission of Tipler and Mosca.
Prerequisites / NoticeFor the exam, a self-written summary sheet, hand-held calculator, and translation dictionary (to English).
529-0058-00LAnalytical Chemistry IIO3 credits3GD. Günther, M.‑O. Ebert, P. Lienemann, R. J. Looser, G. Schwarz
AbstractEnhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.
ObjectiveUse and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems.
ContentCombined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS.
Lecture notesScript will be available
LiteratureLiterature will be within the script
Prerequisites / NoticeExercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended.
Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester)
529-0625-00LChemical EngineeringO3 credits3GW. J. Stark
AbstractChemical Engineering provides an introduction to production and process design. Beyond different types and operation of chemical or bio-reactors, issues of scaling, new synthesis methods and problems of industrial production are addressed. An introduction in heterogeneous catalysis and transport of impulse, mass and energy connect the new concepts to the basic education in chemistry and biology.
ObjectiveIntended for chemists, chemical engineers, biochemists and biologists, the course Chemical and Bioengineering 4th semester addresses the basics of production and process design. Starting with different reactors, process steps and unit operations in production, the industrial scale usage of chemicals and reagents are discussed and further illustrated by examples. Material and energy balances and the concept of selectivity are used to broaden the students view on the complexity of production and show how modern engineering can contribute to an environmentally sustainable production. In the second part of the lecture, reactors, single cells or living matter are discussed in terms of transport properties. Beyond metabolism or chemical processes, transport of impulse, mass and energy heavily influence chemical and biological processes. They are introduced simultaneously and provide a basis for the understanding of flow, diffusion and heat transport. Dimensionless numbers are used to implement transport properties in unit operations and process design. An introduction to heterogeneous catalysis connects the acquired concepts to chemistry and biology and shows how powerful new processes arise from combining molecular understanding and transport.
ContentElements of chemical transformations: preparation of reactants, reaction process, product work-up and recycling, product purification; continuous, semibatch and batch processes; material balances: chemical reactors and separation processes, multiple systems and multistage systems; energy balances: chemical reactors and separation processes, enthalpy changes, coupled material and energy balances; multiple reactions: optimisation of reactor performance, yield and selectivity; mass transport and chemical reaction: mixing effects in homogeneous and heterogeneous systems, diffusion and reaction in porous materials; heat exchange and chemical reaction: adiabatic reactors, optimum operating conditions for exothermic and endothermic equilibrium reactions, thermal runaway, reactor size and scale up.
Lecture notesSupporting material to the course is available on the homepage
LiteratureLiterature and text books are announced at the beginning of the course.
  •  Page  1  of  1