Search result: Catalogue data in Autumn Semester 2019

Physics Bachelor Information
First Year
» Minor Courses
» GESS Science in Perspective
» First Year Compulsory Courses
First Year Compulsory Courses
First Year Examination Block 1
NumberTitleTypeECTSHoursLecturers
401-1151-00LLinear Algebra I Information O7 credits4V + 2UT. H. Willwacher
AbstractIntroduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors.
Objective- Mastering basic concepts of Linear Algebra
- Introduction to mathematical methods
Content- Basics
- Vectorspaces and linear maps
- Systems of linear equations and matrices
- Determinants
- Endomorphisms and eigenvalues
Literature- R. Pink: Lineare Algebra I und II. Summary. Link: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20180710.pdf
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8
- H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/viewbooktoc/product/36737
- S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link
- H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
402-1701-00LPhysics IO7 credits4V + 2UR. Grange
AbstractThis course gives a first introduction to Physics with an emphasis on classical mechanics.
ObjectiveAcquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems.
252-0847-00LComputer Science Information O5 credits2V + 2UM. Schwerhoff, F. O. Friedrich Wicker
AbstractThe course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required.
ObjectivePrimary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist.
ContentThe course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.
Lecture notesEnglish lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online.
LiteratureBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000
First Year Examination Block 2
NumberTitleTypeECTSHoursLecturers
401-1261-07LAnalysis I Information Restricted registration - show details O10 credits6V + 3UP. S. Jossen
AbstractIntroduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration.
ObjectiveThe ability to work with the basics of calculus in a mathematically rigorous way.
LiteratureH. Amann, J. Escher: Analysis I
https://link.springer.com/book/10.1007/978-3-7643-7756-4

J. Appell: Analysis in Beispielen und Gegenbeispielen
https://link.springer.com/book/10.1007/978-3-540-88903-8

R. Courant: Vorlesungen über Differential- und Integralrechnung
https://link.springer.com/book/10.1007/978-3-642-61988-5

O. Forster: Analysis 1
https://link.springer.com/book/10.1007/978-3-658-00317-3

H. Heuser: Lehrbuch der Analysis
https://link.springer.com/book/10.1007/978-3-322-96828-9

K. Königsberger: Analysis 1
https://link.springer.com/book/10.1007/978-3-642-18490-1

W. Walter: Analysis 1
https://link.springer.com/book/10.1007/3-540-35078-0

V. Zorich: Mathematical Analysis I (englisch)
https://link.springer.com/book/10.1007/978-3-662-48792-1

A. Beutelspacher: "Das ist o.B.d.A. trivial"
https://link.springer.com/book/10.1007/978-3-8348-9599-8

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
https://link.springer.com/book/10.1007/978-3-642-28646-9
Second and Third Year Compulsory Courses
Examination Block I
NumberTitleTypeECTSHoursLecturers
401-2303-00LComplex Analysis Information O6 credits3V + 2UP. Biran
AbstractComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
ObjectiveWorking knowledge of functions of one complex variables; in particular applications of the residue theorem.
LiteratureB. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010

Th. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethods of Mathematical Physics I Information Restricted registration - show details O6 credits3V + 2UG. Felder
AbstractFourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics.
Objective
402-2883-00LPhysics IIIO7 credits4V + 2UU. Keller
AbstractIntroductory course on quantum and atomic physics including optics and statistical physics.
ObjectiveA basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations.
ContentEvidence for Quantum Mechanics: atoms, photons, photo-electric effect, Rutherford scattering, Compton scattering, de-Broglie waves.

Quantum mechanics: wavefunctions, operators, Schrodinger's equation, infinite and finite square well potentials, harmonic oscillator, hydrogen atoms, spin.

Atomic structure: Perturbation to basic structure, including Zeeman effect, spin-orbit coupling, many-electron atoms. X-ray spectra, optical selection rules, emission and absorption of radiation, including lasers.

Optics: Fermat's principle, lenses, imaging systems, diffraction, interference, relation between geometrical and wave descriptions, interferometers, spectrometers.

Statistical mechanics: probability distributions, micro and macrostates, Boltzmann distribution, ensembles, equipartition theorem, blackbody spectrum, including Planck distribution
Lecture notesLecture notes will be provided electronically during the course.
LiteratureQuantum mechanics/Atomic physics/Molecules: "The Physics of Atoms and Quanta", H. Hakan and H. C. Wolf, ISBN 978-3-642-05871-4

Optics: "Optics", E. Hecht, ISBN 0-321-18878-0

Statistical mechanics: "Statistical Physics", F. Mandl 0-471-91532-7
Examination Block II
NumberTitleTypeECTSHoursLecturers
402-2203-01LClassical Mechanics Information O7 credits4V + 2UM. Gaberdiel
AbstractA conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.
ObjectiveFundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems.
Examination Block III (Programme Regulations 2016)
NumberTitleTypeECTSHoursLecturers
402-0205-00LQuantum Mechanics I Information O10 credits3V + 2UG. Blatter
AbstractIntroduction to quantum theory: wave mechanics, Schroedinger equation, angular momentum, central force problems, potential scattering, spin. General structure: Hilbert space, states, obervables, equation of motion, density matrix, symmetries, Heisenberg- and interaction picture, approximate methods:
perturbation theory, variational approach, quasi-classics.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentStarting from Feynman's path-integral formulation, we develop the operator technique and introduce Dirac's notation. Quantum phenomena are developed by way of example for one-dimensional single particle problems (bound states, tunneling, scattering problems, resonances, periodic and disordered potentials). We introduce rotations and angular momenta and proceed with central symmetric problems, three dimensional scattering theory, spin, and the addition of angular momenta/spin. Various pictures (Schroedinger-, Heisenberg-, Dirac-) are explained and approximative methods such as variational techniques, perturbation theory, and quasi-classical formalism are introduced.
Lecture notesAuf Moodle, in deutscher Sprache
LiteratureG. Baim, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
Third Year Compulsory Courses (Programme Regulations 2010)
NumberTitleTypeECTSHoursLecturers
402-0205-00LQuantum Mechanics I Information O10 credits3V + 2UG. Blatter
AbstractIntroduction to quantum theory: wave mechanics, Schroedinger equation, angular momentum, central force problems, potential scattering, spin. General structure: Hilbert space, states, obervables, equation of motion, density matrix, symmetries, Heisenberg- and interaction picture, approximate methods:
perturbation theory, variational approach, quasi-classics.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentStarting from Feynman's path-integral formulation, we develop the operator technique and introduce Dirac's notation. Quantum phenomena are developed by way of example for one-dimensional single particle problems (bound states, tunneling, scattering problems, resonances, periodic and disordered potentials). We introduce rotations and angular momenta and proceed with central symmetric problems, three dimensional scattering theory, spin, and the addition of angular momenta/spin. Various pictures (Schroedinger-, Heisenberg-, Dirac-) are explained and approximative methods such as variational techniques, perturbation theory, and quasi-classical formalism are introduced.
Lecture notesAuf Moodle, in deutscher Sprache
LiteratureG. Baim, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
Core Courses
Core Courses in Experimental Physics
NumberTitleTypeECTSHoursLecturers
402-0263-00LAstrophysics IW10 credits3V + 2UH. M. Schmid
AbstractThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
ObjectiveThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0255-00LIntroduction to Solid State PhysicsW10 credits3V + 2UK. Ensslin
AbstractThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.
ObjectiveIntroduction to Solid State Physics.
ContentThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.
Lecture notesThe script will be available on moodle.
LiteratureIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Prerequisites / NoticeVoraussetzungen: Physik I, II, III wünschenswert
Core Courses in Theoretical Physics
NumberTitleTypeECTSHoursLecturers
402-0205-00LQuantum Mechanics I Information W10 credits3V + 2UG. Blatter
AbstractIntroduction to quantum theory: wave mechanics, Schroedinger equation, angular momentum, central force problems, potential scattering, spin. General structure: Hilbert space, states, obervables, equation of motion, density matrix, symmetries, Heisenberg- and interaction picture, approximate methods:
perturbation theory, variational approach, quasi-classics.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems.
ContentStarting from Feynman's path-integral formulation, we develop the operator technique and introduce Dirac's notation. Quantum phenomena are developed by way of example for one-dimensional single particle problems (bound states, tunneling, scattering problems, resonances, periodic and disordered potentials). We introduce rotations and angular momenta and proceed with central symmetric problems, three dimensional scattering theory, spin, and the addition of angular momenta/spin. Various pictures (Schroedinger-, Heisenberg-, Dirac-) are explained and approximative methods such as variational techniques, perturbation theory, and quasi-classical formalism are introduced.
Lecture notesAuf Moodle, in deutscher Sprache
LiteratureG. Baim, Lectures on Quantum Mechanics
E. Merzbacher, Quantum Mechanics
L.I. Schiff, Quantum Mechanics
R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals
J.J. Sakurai: Modern Quantum Mechanics
A. Messiah: Quantum Mechanics I
S. Weinberg: Lectures on Quantum Mechanics
Practical Courses (Programme Regulations 2016)
NumberTitleTypeECTSHoursLecturers
402-0000-01LPhysics Lab 1 Information
Enrollment is only possible under https://www.lehrbetrieb.ethz.ch/laborpraktika.
No registration required via myStudies. For further information visit: https://ap.phys.ethz.ch

Only students from 3rd Semester BSc Physics on are admitted to Physics Lab 2.
O5 credits1V + 4PA. Eichler, M. Kroner
AbstractIntroductory lab course in experimental physics with accompanying lecture
ObjectiveÜbergeordnetes Thema des Praktikums und der Vorlesung ist die Auseinandersetzung mit den grundlegenden Herausforderungen eines physikalischen Experimentes. Am Beispiel einfacher experimenteller Aufbauten und Aufgaben stehen vor allem folgende Gesichtspunkte im Vordergrund:

- Motivation und Herangehensweise in der Experimentalphysik
- Praktischer Aufbau von Experimenten und grundlegende Kenntnisse von Messmethoden und Instrumenten
- Einführung in relevante statistische Methoden der Datenauswertung und Fehleranalyse
- Kritische Beurteilung und Interpretation der Beobachtungen und Ergebnisse
- Darstellen und Kommunizieren der Ergebnisse mit Graphiken und Text
- Ethische Aspekte der experimentellen Forschung und wissenschaftlicher Kommunikation
ContentVersuche zu Themen aus den Bereichen der Mechanik, Optik, Wärme, Elektrizität und Kernphysik mit begleitender Vorlesung zur Vertiefung des Verständnisses der Datenanalyse und Interpretation
Lecture notesAnleitung zum Physikalischen Praktikum; Vorlesungsskript
Prerequisites / NoticeAus einer Liste von 33 Versuchen müssen 9 Versuche in Zweiergruppen durchgeführt werden.

Am ersten Termin findet nur eine dreistündige Einführungsveranstaltung im Hörsaal statt und es werden noch keine Experimente durchgeführt.
402-0000-09LPhysics Lab 3 Information Restricted registration - show details
Only for Physics BSc (Programme Regulations 2016) resp. Interdisciplinary Sciences BSc (Physical-Chemical Direction)
O7 credits1V + 1U + 13PM. Donegà, S. Gvasaliya
AbstractThis laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills.
Manuals for the individual experiments are available in English.
ObjectiveStudents learn to independently perform advanced experiments and document them scientifically correct.

Students are required to attend the safety lecture on the first day of the course and sign an "Attendance confirmation sheet". Students will be asked to present their sheet to access the laboratory rooms and perform the experiments.

The following aspects are emphasized:
- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication


The experiments are complemented by a series of mandatory lectures covering the most important elements of statistics needed to correctly analyse the measured data. The main lectures topics are:
- combinatorial calculus
- probability distributions
- error propagation
- parameters estimation (least squares and likelihood fits)
ContentWe offer experiments covering the following topics:
Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.
Lecture notesInstructions for experiments are available in English.
Prerequisites / NoticeFrom a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.
Practical Courses (Programme Regulations 2010)
NumberTitleTypeECTSHoursLecturers
402-0000-01LPhysics Lab 1 Information
Enrollment is only possible under https://www.lehrbetrieb.ethz.ch/laborpraktika.
No registration required via myStudies. For further information visit: https://ap.phys.ethz.ch

Only students from 3rd Semester BSc Physics on are admitted to Physics Lab 2.
O5 credits1V + 4PA. Eichler, M. Kroner
AbstractIntroductory lab course in experimental physics with accompanying lecture
ObjectiveÜbergeordnetes Thema des Praktikums und der Vorlesung ist die Auseinandersetzung mit den grundlegenden Herausforderungen eines physikalischen Experimentes. Am Beispiel einfacher experimenteller Aufbauten und Aufgaben stehen vor allem folgende Gesichtspunkte im Vordergrund:

- Motivation und Herangehensweise in der Experimentalphysik
- Praktischer Aufbau von Experimenten und grundlegende Kenntnisse von Messmethoden und Instrumenten
- Einführung in relevante statistische Methoden der Datenauswertung und Fehleranalyse
- Kritische Beurteilung und Interpretation der Beobachtungen und Ergebnisse
- Darstellen und Kommunizieren der Ergebnisse mit Graphiken und Text
- Ethische Aspekte der experimentellen Forschung und wissenschaftlicher Kommunikation
ContentVersuche zu Themen aus den Bereichen der Mechanik, Optik, Wärme, Elektrizität und Kernphysik mit begleitender Vorlesung zur Vertiefung des Verständnisses der Datenanalyse und Interpretation
Lecture notesAnleitung zum Physikalischen Praktikum; Vorlesungsskript
Prerequisites / NoticeAus einer Liste von 33 Versuchen müssen 9 Versuche in Zweiergruppen durchgeführt werden.

Am ersten Termin findet nur eine dreistündige Einführungsveranstaltung im Hörsaal statt und es werden noch keine Experimente durchgeführt.
402-0241-00LAdvanced Physics Laboratory I Information Restricted registration - show details
IMPORTANT: You may not enrol repeatedly in the course of the Bachelor programme.
O9 credits1V + 1U + 17PM. Donegà, S. Gvasaliya
AbstractThis laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills.
Manuals for the individual experiments are available in English.
ObjectiveStudents learn to independently perform advanced experiments and document them scientifically correct.
The following aspects are emphasized:
- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication

The experiments are complemented by a series of mandatory lectures covering the most important elements of statistics needed to correctly analyse the measured data. The main lectures topics are:
- combinatorial calculus
- probability distributions
- error propagation
- parameters estimation (least squares and likelihood fits)
ContentWe offer experiments covering the following topics:
Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.
Lecture notesInstructions for experiments are available in English.
Prerequisites / NoticeFrom a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.
  •  Page  1  of  4 Next page Last page     All