| Name | Prof. Dr. David J. Norris |
| Field | Materials Engineering |
| Address | Professur für Material-Engineering ETH Zürich, LEE P 210 Leonhardstrasse 21 8092 Zürich SWITZERLAND |
| Telephone | +41 44 632 53 60 |
| dnorris@ethz.ch | |
| Department | Mechanical and Process Engineering |
| Relationship | Full Professor |
| Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 151-0123-00L | Experimental Methods for Engineers | 4 credits | 2V + 2U | F. Coletti, M. Lukatskaya, A. Manera, D. J. Norris, O. Supponen, M. Tibbitt | ||||||||||||||||||||||||||||||||||||||
| Abstract | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics, energy, and process engineering) are attended by students in small groups. | |||||||||||||||||||||||||||||||||||||||||
| Learning objective | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic, energy, and process-engineering applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition, and processing. Study of applications in the laboratory. Fundamentals of scientific documentation and reporting. | |||||||||||||||||||||||||||||||||||||||||
| Content | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, and process engineering). Student participation in ~6 laboratory experiments (study groups of ~3 students, dependent on the number of course participants and available experiments). Lab reports for all attended experiments have to be submitted by the study groups. | |||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Presentations, handouts, and instructions are provided for each experiment. | |||||||||||||||||||||||||||||||||||||||||
| Literature | Holman, J.P. "Experimental Methods for Engineers," McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation," Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik," Teubner 1997, ISBN 3-519-02379-2 | |||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | |||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||
| 151-0952-00L | Nanophotonics: from Fundamentals to Applications | 4 credits | 2V + 2U | D. J. Norris, R. Quidant | ||||||||||||||||||||||||||||||||||||||
| Abstract | Nanophotonics exploits the unique optical properties of nanostructured materials to boost our control over light, beyond what conventional optics can do. In particular, nanophotonics has proven to offer a unique toolbox to engineer light on the nanometer scale, benefiting a wide spectrum of scientific disciplines, ranging from physics, chemistry, biology, and engineering. | |||||||||||||||||||||||||||||||||||||||||
| Learning objective | The purpose of this course is threefold: (i) to introduce students to the principal concepts of nanophotonics, (ii) to describe some of the main nanophotonics implementations to control light on the nanometer scale, and finally (iii) to present specific applications where nanophotonics has made breakthrough contributions. | |||||||||||||||||||||||||||||||||||||||||
| Content | I- INTRODUCTORY CONCEPTS 1. The diffraction limit and the challenges of conventional optics 2. The optical near field 3. Reminders on light-matter interaction 4. Reminders on optical resonators II- PLASMONICS 1. Surface plasmon polaritons 2. Localized surface plasmons 3. Hot carriers 4. Thermoplasmonics III- DIELECTRIC NANOPHOTONICS 1. Mie resonances in subwavelength particles 2. Electric versus magnetic resonances 3. Mode engineering and directional scattering 4. Dielectric nanophotonics versus plasmonics IV- ARTIFICIAL PHOTONIC MATERIALS 1. Photonic crystals 2. Metamaterials 3. Topological photonics 4. Flat optics, metasurfaces & metalenses V- APPLICATIONS 1. Renewable energy 2. Biomedicine 3. Information and Communication Technology | |||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||
| Literature | - Introduction to Nanophotonics - Benisty, Greffet & Lalanne - Absorption and scattering of light by small particles - Bohren & Huffman - Thermoplasmonics - Baffou - Plasmonics - Maier | |||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Physics, Introduction to Photonics | |||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||
| 151-0966-00L | Quantum Mechanics Note: The previous course title until FS23 "Introduction to Quantum Mechanics for Engineers" | 4 credits | 2V + 2U | D. J. Norris | ||||||||||||||||||||||||||||||||||||||
| Abstract | This course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering. | |||||||||||||||||||||||||||||||||||||||||
| Learning objective | To work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated. | |||||||||||||||||||||||||||||||||||||||||
| Content | Fundamentals of Quantum Mechanics - Historical Perspective - Schrödinger Equation - Postulates of Quantum Mechanics - Operators - Harmonic Oscillator - Hydrogen atom - Multielectron Atoms - Crystalline Systems - Spectroscopy - Approximation Methods - Applications in Engineering | |||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Class Notes and Handouts | |||||||||||||||||||||||||||||||||||||||||
| Literature | Text: David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, 3rd Edition, Cambridge University Press. | |||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Analysis III, Mechanics III, Physics I, Linear Algebra II | |||||||||||||||||||||||||||||||||||||||||

